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1.	Why	look	at	language	acquisition?	
	 	
Though	it	is	not	always	directly	stated,	the	debate	at	the	center	of	this	volume	is	in	many	
ways	driven	by	language	acquisition	considerations.	Long-distance	dependencies	are	
themselves	relatively	complex,	as	they	involve	context-sensitive	grammatical	operations	
(e.g.,	wh-movement	or	slash-passing).	The	existence	of	context-sensitive	operations	alone	
increases	the	complexity	of	the	hypothesis	space	of	possible	grammars	that	must	be	
considered	by	children	during	the	acquisition	process.	If	island	effects	are	indeed	the	result	
of	grammatical	constraints,	then	the	hypothesis	space	increases	yet	again,	as	the	grammar	
must	also	contain	complex	constraints	on	context-sensitive	operations.	A	common	
hypothesis	in	the	generative	syntax	literature	is	that	this	level	of	complexity	(constraints	
on	context-sensitive	grammatical	operations)	cannot	be	learned	directly	from	the	input	
that	children	receive	(i.e.,	this	is	a	poverty	of	the	stimulus	problem).	As	such,	many	
generative	syntacticians	have	postulated	the	existence	of	innate	domain-specific	
knowledge	about	the	form	that	such	constraints	must	take.	In	other	words,	the	
grammatical	approach	to	island	effects	is	often	correlated	with	a	nativist,	or	Universal	
Grammar	(UG)	based,	view	of	language	acquisition.	In	this	way,	a	reductionist	approach	to	
island	effects	could	be	seen	as	a	type	of	simplifying	approach	to	the	grammar,	as	it	could	
eliminate	the	need	for	one	set	of	innate	constraints	on	the	shape	of	human	grammars.	
Because	of	this,	it	seems	to	us	that	discussions	of	“parsimony”	and	“simplification”	in	the	
reductionist	literature	either	directly	or	indirectly	concern	the	presumed	problem	that	
occurs	during	language	acquisition.		

Given	the	amount	of	research	that	has	been	conducted	on	the	debate	between	
grammatical	and	reductionist	approaches	to	island	effects,	it	seems	important	at	this	stage	
to	determine	exactly	what	type	of	innate	knowledge	(if	any)	would	be	necessary	to	learn	
the	grammatical	constraints	that	give	rise	to	island	effects,	given	the	input	that	children	
receive	during	language	acquisition.	Such	an	investigation	will	help	determine	exactly	what	
is	at	stake	in	this	debate.	If	grammatical	island	constraints	cannot	be	learned	from	the	input	
available	to	children	without	innate	domain-specific	knowledge	(UG),	then	this	debate	has	
direct	implications	for	the	language	acquisition	process.	However,	if	grammatical	island	
constraints	can	be	learned	from	the	input	available	to	children	without	UG-like	knowledge,	
then	this	debate	is	simply	one	empirical	question	among	the	hundreds	that	must	be	
answered	in	order	to	have	a	complete	theory	of	language.		

In	this	chapter,	we	examine	child-directed	speech	input	in	order	to	formalize	the	
apparent	induction	problem	that	has	been	claimed	by	linguists.	We	then	explore	a	
statistical	learning	model	of	island	constraints	that	is	based	upon	the	frequency	of	certain	
abstract	structures	in	the	input.	The	model	is	tested	on	input	derived	from	child-directed	
speech	(from	CHILDES:	MacWhinney	(2000))	as	well	as	input	derived	from	adult-directed	
speech	(Switchboard	section	of	Treebank-3:	Marcus	et	al.	1999)	and	adult-directed	text	
(Brown	section	of	Treebank-3:		Marcus	et	al.	1999).	We	use	this	statistical	model	to	
investigate	the	types	of	learning	biases	that	are	necessary	to	learn	these	constraints	from	
the	input,	with	the	goal	of	determining	whether	any	innate	domain-specific	biases	(i.e.,	UG)	
are	necessary.	Our	results	suggest	that	a	learner	only	requires	the	following	biases	to	learn	



syntactic	island	constraints	from	child-directed	input,	none	of	which	are	necessarily	
specific	to	the	nativist/UG	approach	to	language	acquisition,	though	they	do	raise	difficult	
questions	about	how	these	particular	biases	arise	in	the	learner	(see	also	Pearl	and	Sprouse	
submitted):		

	
(i) perceive	the	input	with	a	phrase-structure-based	representation	of	sentences	(i.e.,	a	

parser)	
(ii) characterize	dependencies	as	sequences	of	phrase	structure	nodes	
(iii) track	the	frequency	of	sequences	of	three	phrase	structure	nodes	(trigrams	of	

phrase	structure	nodes),	and	their	associated	probability	of	occurring	
(iv) construct	a	longer	dependency	by	combining	trigrams	of	phrase	structure	nodes,	

and	assess	that	dependency’s	grammaticality	based	on	that	combination	
	
The	fact	that	syntactic	island	constraints	can	potentially	be	learned	from	realistic	

child-directed	and	adult-directed	input	without	any	clearly	nativist/UG-specific	abilities	
suggests	that	the	grammatical	versus	reductionist	debate	has	no	implications	for	the	
debate	between	nativists	and	non-nativists,	but	is	instead	just	one	question	among	many	
required	to	fully	understand	the	human	language	system.		
	
2.	The	induction	problem	
	
Investigating	the	learning	of	syntactic	island	effects	requires	a	formally	explicit	definition	
of	the	target	state	beyond	the	asterisks/no-asterisks	that	are	typically	used	to	delineate	
unacceptable	sentences	in	syntactic	articles.	To	that	end,	we	decided	to	explicitly	construct	
the	target	state	from	data	from	Sprouse	et	al.	(2012),	who	collected	formal	acceptability	
judgments	for	four	island	types	using	the	magnitude	estimation	task:	Complex	NP	islands	
(1),	Subject	islands	(2),	Whether	islands	(3),	and	Adjunct	islands	(4).		Sprouse	et	al.	(2012)	
used	a	factorial	definition	of	island	effects	for	each	island	type	(see	Sprouse	(this	volume)	
for	discussion	of	the	value	of	the	factorial	definition	of	island	effects).	For	our	purposes,	
this	simply	means	that	each	island	type	was	defined	by	four	sentence	types	(4	island	types	
x	4	sentence	types	=	16	sentence	types).	An	example	of	each	sentence	type	and	the	
resulting	container	node	sequence	is	given	in	(1)–(4):	(a)	MATRIX	gap,	NON-ISLAND	structure,	
(b)	EMBEDDED	gap,	NON-ISLAND	structure,	(c)	MATRIX	gap,	ISLAND	structure,	(d)	EMBEDDED	gap,	
ISLAND	structure.			
	
(1)	Complex	NP	islands	
	 a.	 *Who	__	claimed	that	Lily	forgot	the	necklace?	 	 MATRIX	|	NON-ISLAND	
	 b.	 *What	did	the	teacher	claim	that	Lily	forgot	__?	 	 EMBEDDED	|	NON-ISLAND	
	 c.	 *Who	__	made	the	claim	that	Lily	forgot	the	necklace?	 MATRIX	|	ISLAND		
	 d.	 *What	did	the	teacher	make	the	claim	that	Lily	forgot	__?	EMBEDDED	|	ISLAND	
	
(2)	 Subject	islands	
	 a.	 *Who	__	thinks	the	necklace	is	expensive?	 	 	 MATRIX	|	NON-ISLAND	
	 b.	 *What	does	Jack	think	__	is	expensive?	 	 	 EMBEDDED	|	NON-ISLAND	
	 c.	 *Who	__	thinks	the	necklace	for	Lily	is	expensive?		 MATRIX	|	ISLAND		
	 d.	 *Who	does	Jack	think	the	necklace	for	__	is	expensive?	 EMBEDDED	|	ISLAND	



	
(3)	 Whether	islands	
	 a.	 *Who	__	thinks	that	Jack	stole	the	necklace?	 	 MATRIX	|	NON-ISLAND	
	 b.	 *What	does	the	teacher	think	that	Jack	stole	__	?	 	 EMBEDDED	|	NON-ISLAND	
	 c.	 *Who	__	wonders	whether	Jack	stole	the	necklace?	 MATRIX	|	ISLAND		
	 d.	 *What	does	the	teacher	wonder	whether	Jack	stole	__	?	 EMBEDDED	|	ISLAND	
	
(4)	 Adjunct	islands	
	 a.	 *Who	__	thinks	that	Lily	forgot	the	necklace?	 	 MATRIX	|	NON-ISLAND	
	 b.	 *What	does	the	teacher	think	that	Lily	forgot	__	?	 	 EMBEDDED	|	NON-ISLAND	
	 c.	 *Who	__	worries	if	Lily	forgot	the	necklace?	 	 MATRIX	|	ISLAND		
	 d.	 *What	does	the	teacher	worry	if	Lily	forgot	__	?	 	 EMBEDDED	|	ISLAND		
	

The	factorial	definition	of	island	effects	makes	the	presence	of	an	island	effect	
visually	salient:	If	we	plot	the	acceptability	of	the	four	sentence	types	in	a	configuration	
known	as	an	interaction	plot,	the	presence	of	an	island	effect	shows	up	as	two	non-parallel	
lines,	which	indicates	a	statistical	interaction	of	the	two	factors	in	the	definition	(the	left	
panel	of	Figure	1);	the	absence	of	an	island	effect	shows	up	as	two	parallel	lines,	which	
indicates	no	interaction	of	the	two	factors	in	the	definition	(the	right	panel	of	Figure	1).	
	
Figure	1:	Example	graphs	showing	the	presence	(left	panel)	and	absence	(right	panel)	of	
island	effects	using	the	factorial	definition	(see	also	Sprouse	(this	volume)).	

	
	
Sprouse	et	al.	(2012)	found	that	adult	judgments	demonstrated	an	island	effect	for	all	four	
island	types,	which	means	that	knowledge	of	these	syntactic	islands	is	indeed	necessary	to	
acquire.	
	 To	assess	a	child’s	input	for	constraints	on	wh-dependencies	(and,	specifically,	the	
data	in	the	input	directly	relevant	for	generating	the	judgments	in	Sprouse	et	al.	2012),	we	
examined	child-directed	speech	samples	to	determine	the	frequency	of	the	structures	used	
as	experimental	stimuli	in	Sprouse	et	al.	(2012).	 While	the	CHILDES	database	has	many	
corpora	that	are	annotated	with	syntactic	dependency	information	(Sagae,	Davis,	Lavie,	
MacWhinney,	&	Wintner,	2010),	it	is	difficult	to	automatically	extract	the	kind	of	wh-
dependency	information	we	needed	to	identify.	For	this	reason,	we	selected	five	well-
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known	corpora	of	child-directed	speech	from	the	CHILDES	database	(MacWhinney,	2000)	
to	annotate	with	phrase	structure	tree	information:	the	Adam,	Eve,	and	Sarah	corpora	from	
the	Brown	data	set	(Brown,	1973),	the	Valian	corpus	(Valian	1991),	and	the	Suppes	corpus	
(Suppes	1974).	We	first	automatically	parsed	the	child-directed	speech	utterances	using	a	
freely	available	syntactic	parser	(the	Charniak	parser1),	yielding	the	basic	phrase	tree	
structures.	However,	due	to	the	conversational	nature	of	the	data,	there	were	many	errors.	
We	subsequently	had	the	parser’s	output	hand-checked	by	two	separate	annotators	from	a	
group	of	UC	Irvine	undergraduates	who	had	syntax	training,	with	the	idea	that	errors	that	
slipped	past	the	first	annotator	would	be	caught	by	the	second.2	We	additionally	hand-
checked	the	output	of	our	automatic	extraction	scripts	when	identifying	the	frequency	of	
wh-dependencies	used	as	experimental	stimuli	in	Sprouse	et	al.	(2012)	in	order	to	provide	
a	third	level	of	error	detection.	
	 The	data	from	these	five	corpora	comprise	child-directed	speech	to	25	children	
between	the	ages	of	one	and	five	years	old,	with	813,036	word	tokens	total.	In	all	the	
utterances,	31,247	contained	a	wh-word	and	a	verb,	and	so	were	likely	to	contain	a	
syntactic	dependency.	Table	1	shows	the	number	of	examples	found	containing	the	
structures	and	dependencies	examined	in	Sprouse	et	al.	(2012).	
	
Table	1.	The	corpus	analysis	of	the	child-directed	speech	samples	from	CHILDES,	given	the	
experimental	stimuli	used	in	Sprouse	et	al.	(2012)	for	the	four	island	types	examined.		The	
syntactic	island	condition	(which	is	ungrammatical)	is	italicized.3	
	
	 	 	 	 	

	 MATRIX	|		
NON-ISLAND	

EMBEDDED	|		
NON-ISLAND	

MATRIX	|		
ISLAND	

EMBEDDED	|	
	ISLAND	

	 	 	 	 	
	 	 	 	 	

Complex	NP	 7	 295	 0	 0	
	 	 	 	 	

Subject	 7	 029		 0	 0	
	 	 	 	 	

																																																								
1	Available	at	ftp://ftp.cs.brown.edu/pub/nlparser/.	

2	This	work	was	conducted	as	part	of	NSF	grant	BCS-0843896,	and	the	parsed	corpora	are	available	at	

http://www.socsci.uci.edu/~lpearl/CoLaLab/TestingUG/index.html.	

3	Note	that	the	number	of	MATRIX	|	NON-ISLAND	data	are	identical	for	all	four	island	types	since	that	control	

structure	was	identical	for	each	island	type	(a	wh-dependency	linked	to	the	subject	position	in	the	main	

clause,	with	the	main	clause	verb	(e.g.,	thinks)	taking	a	tensed	subordinate	clause	(e.g.,	Lily	forgot	the	

necklace)).		Similarly,	the	number	of	EMBEDDED	|	NON-ISLAND	data	are	identical	for	Complex	NP,	Whether,	and	

Adjunct	islands	since	that	control	structure	was	identical	for	those	island	types	(a	wh-dependency	linked	to	

the	object	position	in	the	embedded	clause,	with	the	main	clause	verb	taking	a	tensed	subordinate	clause).	



Whether	 7	 295	 0	 0	
	 	 	 	 	

Adjunct	 7	 295	 15	 0	
	 	 	 	 	

	
From	Table	1,	we	can	see	that	these	utterance	types	are	fairly	rare	in	general,	with	

the	most	frequent	type	(LONG	|	NON-ISLAND)	appearing	0.9%	of	the	time	(295	of	31,247).	
Secondly,	we	see	that	being	grammatical	doesn’t	necessarily	mean	an	utterance	type	will	
occur	in	the	input.		Specifically,	while	both	the	MATRIX	|	NON-ISLAND	and	MATRIX	|	ISLAND	
utterance	types	are	grammatical,	they	rarely	occur	in	the	input	(7	for	MATRIX	|	NON-ISLAND,	
15	for	the	Adjunct	MATRIX	|	ISLAND	type).	This	is	problematic	from	a	learning	standpoint,	if	a	
learner	is	keying	grammaticality	directly	to	input	frequency.	Unless	the	child	is	very	
sensitive	to	small	frequency	differences	(even	15	out	of	31,247	is	less	than	0.05%	of	the	
relevant	input),	the	difference	between	the	frequency	of	grammatical	MATRIX	|	ISLAND	or	
MATRIX	|	NON-ISLAND	utterances	and	that	of	ungrammatical	EMBEDDED	|	ISLAND	utterances	is	
very	small	for	Adjunct	island	effects.	It’s	even	worse	for	Complex	NP,	Subject,	and	Whether	
island	effects,	since	the	difference	between	grammatical	MATRIX	|	ISLAND	utterances	and	
ungrammatical	EMDBEDDED	|	ISLAND	structures	is	nonexistent.		Since	neither	utterance	type	
appears	in	the	input,	how	would	this	learner	classify	one	as	grammatical	and	the	other	
ungrammatical?	Thus,	it	appears	that	child-directed	speech	input	presents	an	induction	
problem	to	a	learner	attempting	to	acquire	adult	grammatical	knowledge	about	syntactic	
islands.			

The	existence	of	an	induction	problem	then	requires	some	sort	of	learning	bias	in	
order	for	children	to	end	up	with	the	correct	grammaticality	judgments.	We	note	that	this	
induction	problem	arises	when	we	assume	that	children	are	limiting	their	attention	to	
direct	evidence	of	the	language	knowledge	of	interest	(something	Pearl	&	Mis	(submitted)	
call	the	direct	evidence	assumption)	–	in	this	case,	utterances	containing	wh-dependencies	
and	certain	linguistic	structures.	One	useful	bias	may	involve	children	expanding	their	view	
of	which	data	are	relevant	(Foraker	et	al.,	2009;	Pearl	&	Mis,	2011;	Perfors,	Tenenbaum,	&	
Regier,	2011),	and	thus	including	indirect	positive	evidence	(Pearl	&	Mis,	submitted)	for	
syntactic	islands	in	their	input.	We	explore	this	option	in	the	learning	algorithm	we	
describe	in	the	next	section.			
	
3.	A	statistical	learning	algorithm	for	syntactic	islands		
	
Though	there	appears	to	be	an	induction	problem	for	syntactic	islands,	children	clearly	
must	utilize	some	learning	procedure	in	order	for	them	to	become	adults	who	have	the	
acceptability	judgments	observed	in	Sprouse	et	al.	(2012).		The	essence	of	the	acquisition	
process	involves	applying	learning	procedures	to	the	available	input	in	order	to	produce	
knowledge	about	language	(Niyogi	&	Berwick	1996,	Yang	2002,	among	many	others).	Pearl	
&	Lidz	(2009)	suggest	that	the	complete	description	of	the	acquisition	process	must	
contain	at	least	the	following:	
	

(i) a	specification	of	the	child’s	representation(s)	of	the	hypothesis	space	
(ii) a	representation	of	the	input	that	is	available	to	children	(the	intake	(Fodor	

1998a))	



(iii) the	updating	procedure	that	is	used	to	navigate	the	hypothesis	space	
In	a	modeled	learner,	we	can	(and	must)	precisely	specify	each	component	of	the	

acquisition	process,	including	whether	a	bias	is	present	and	what	the	bias	does	to	the	
hypothesis	space,	the	input,	and/or	the	update	procedure.		For	example,	almost	all	theories	
assume	that	children	must	have	a	bias	to	represent	their	hypotheses	about	linguistic	
structures	as	abstract	phrase	structure	trees.	Nativist/UG-based	theories	may	go	even	
further	and	assume	an	even	more	abstract	hypothesis	space,	perhaps	in	the	form	of	
primitives	necessary	for	innate	syntactic	constraints	(e.g.,	bounding	nodes	for	the	
Subjacency	condition	(Chomsky	1973)).	Similarly	many	theories	assume	that	children	have	
a	bias	to	use	probabilistic	reasoning	to	update	their	beliefs	about	which	structures	are	
grammatical	(e.g.,Tenenbaum	&	Griffiths	2001,	Griffiths	&	Tenenbaum	2005,	Gerken	2006,	
Xu	&	Tenenbaum	2007,	Frank	et	al.	2009).	Nativist/UG-based	theories	may	again	go	even	
further	by	assuming	that	a	single	occurrence	of	a	given	structure	is	enough	to	instantiate	a	
given	grammar	(e.g.,	triggers	(Lightfoot	1991,	Gibson	&	Wexler	1994,	Niyogi	&	Berwick	
1996,	Fodor	1998a,	Dresher	1999,	Lightfoot	2010,	among	others)).	Formally	modeling	
these	allows	us	to	see	the	effect	of	any	given	learning	bias	on	acquisition,	and	determine	
which	biases	are	necessary.	Once	we	have	that,	we	can	then	investigate	the	nature	of	the	
necessary	biases	to	determine	if	they	qualify	as	unique	to	nativist/UG-based	approaches	to	
acquisition,	or	are	shared	by	non-nativist	theories	of	acquisition.	

We	will	use	the	three	components	mentioned	above	to	organize	the	presentation	of	
our	learning	algorithm,	albeit	in	a	slightly	different	order:	the	representation	of	the	input,	
the	representation	of	the	hypothesis	space	given	the	input,	and	the	updating	procedure	
given	the	input.	We	describe	the	performance	of	this	learning	strategy	based	on	realistic	
input	in	section	4.	We	postpone	discussion	of	the	nature	of	the	components	of	the	learning	
strategy	until	section	5.	

	
3.1		The	representation	of	the	input	 	
Turning	first	to	the	input	representation,	we	suggest	that	children	may	be	tracking	the	
occurrence	of	structures	that	can	be	derived	from	phrase	structure	trees.	To	illustrate,	the	
phrase	structure	tree	for	“Who	did	she	like?”	can	be	represented	with	the	bracket	notation	
in	(5a),	which	depicts	the	phrasal	constituents	of	the	tree.	We	also	assume	that	the	learner	
can	extract	one	crucial	piece	of	information	from	this	phrase	structure	tree:	all	of	the	
phrasal	nodes	that	dominate	the	gap	location,	which	we	will	metaphorically	call	its	
“container	nodes.”	A	simple	way	to	identify	the	container	nodes	is	simply	those	phrasal	
constituents	currently	unclosed	(opened	with	a	left	bracket),	given	the	understood	position	
of	the	dependencies.	Since	container	nodes	play	an	integral	role	in	all	syntactic	
formulations	of	island	constraints,	they	therefore	seem	like	a	necessary	starting	point	for	
constructing	such	constraints.	Furthermore,	the	sentence-processing	literature	has	
repeatedly	established	that	the	search	for	the	gap	location	is	an	active	process	(Crain	&	
Fodor	1985,	Stowe	1986)	that	tracks	the	container	nodes	of	the	gap	location	(see	Phillips	
2006	for	a	list	of	real-time	studies	that	have	demonstrated	the	parser’s	sensitivity	to	island	
boundaries).	In	this	way,	our	assumption	that	the	learner	can	in	principle	extract	this	
information	from	the	phrase	structure	trees	is	actually	a	well-established	fact	of	the	
behavior	of	the	human	sentence	parser	(though	there	is	a	difference	between	having	access	
to	information	and	actually	using	that	information,	which	we	discuss	in	detail	in	section	5).	
For	(5a),	the	container	nodes	would	be	the	sequence	in	(5b),	where	the	gap	location	of	the	



displaced	NP	who	is	dominated	by	the	matrix	VP	and	then	the	matrix	IP.	We	can	represent	
this	dominance	information	as	a	sequence	of	container	nodes,	as	in	(5c).		Another	example	
is	shown	in	(6a)-(6c),	with	the	utterance	“Who	did	she	think	the	gift	was	from?”		Here,	the	
gap	position	of	the	displaced	NP	who	is	dominated	by	several	nodes	(6b).	This	can	be	
represented	by	the	container	node	sequence	in	(6c).	
	
(5)	 a.	 	[CP	Who	did	[IP	she	[VP	like	[NP	__]]]]]?	

b.					 	 											IP									VP	
c.	 	IP-VP	

	
(6)	 a.	 	[CP	Who	did	[IP	she	[VP	think	[CP	[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	

b.	 	 												IP								VP	 CP		IP	 	 								VP										PP	 	
c.	 	IP-VP-CP-IP-VP-PP	

	
	 In	order	to	track	container	node	sequences,	the	learning	algorithm	must	also	specify	
the	set	of	possible	container	nodes.	For	the	current	algorithm,	we	assume	phrase	structure	
nodes	that	are	relatively	universal	across	syntactic	theories	(e.g.,	NP,	VP,	IP,	CP).	However,	
the	definition	of	island	effects	and	the	corpus	study	in	section	2	make	it	clear	that	CP	nodes	
must	be	subcategorized	in	order	to	successfully	learn	syntactic	islands.	For	example,	
without	subcategorizing	the	CP	node,	the	container	node	sequence	for	the	grammatical	
EMBEDDED	|	NON-ISLAND	sentence	in	the	Whether	island	design	would	be	identical	to	the	
ungrammatical	EMBEDDED	|	ISLAND	condition:	IP-VP-CP-IP-VP.	In	order	to	separate	these	two	
conditions,	the	algorithm	must	track	the	lexical	item	that	introduces	the	CP	(that	versus	
whether):	IP-VP-CPthat-IP-VP	versus	IP-VP-CPwhether-IP-VP.	This	is	an	empirical	necessity;	
however,	we	discuss	potential	empirical	motivation	for	this	assumption	in	section	5.	
	
3.2	The	representation	of	the	hypothesis	space	
Given	this	input	representation,	we	propose	that	the	hypotheses	concern	which	container	
node	sequences	are	grammatical	and	which	are	not.	That	is,	one	hypothesis	might	be	
something	like	“The	container	node	sequence	IP-VP	is	grammatical”.		Children’s	acquisition	
then	consists	of	assigning	some	probability	to	each	hypothesis,	explicitly	or	implicitly.	We	
propose	a	learning	algorithm	below	that	implicitly	assigns	a	probability	to	each	hypothesis	
like	this,	based	on	the	form	of	the	container	node	sequence.	In	order	to	represent	the	
hypothesis	space	this	way,	children	need	only	to	represent	the	input	in	terms	of	these	
container	node	sequences,	which	comes	from	being	able	to	parse	and	track	dependencies	
in	a	given	utterance.		
	 The	learning	algorithm	we	propose	involves	the	learner	tracking	the	frequency	of	
smaller	sub-sequences	of	container	node	sequences,	as	encountered	in	the	input.	In	
particular,	we	suggest	that	a	learner	could	track	the	frequency	of	container	node	trigrams	



(i.e.,	a	continually	updated	sequence	of	three	container	nodes)	in	the	input	utterances.4	For	
example,	the	container	node	sequences	from	(5c)	would	be	represented	as	a	sequence	of	
trigrams	as	in	(7c),	and	the	container	node	sequences	from	(6c)	would	be	represented	as	a	
sequence	of	trigrams	as	in	(8c):	
	
(7)	 a.	 	[CP	Who	did	[IP	she	[VP	like	[NP	__]]]]]?	

b.					 	 												IP								VP	
c.	 start-IP-VP-end	=	

	 	 start-IP-VP-end	 	
start-IP-VP-end	 	

	
	
(8)	 a.	 	[CP	Who	did	[IP	she	[VP	think	[CP							[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	

b.	 	 												IP							VP	 CPnull		IP	 	 	VP							PP	 	
c.	 start-IP-VP-CPnull-IP-VP-PP-end	=	

	 	 start-IP-VP-CP-IP-VP-PP-end	
	 				 start-IP-VP-CPnull-IP-VP-PP-end	

start-IP-VP-CPnull-IP-VP-PP-end	
start-IP-VP-CPnull-IP-VP-PP-end	
start-IP-VP-CPnull-IP-VP-PP-end	
start-IP-VP-CPnull-IP-VP-PP-end	

	
3.3	The	updating	procedure	
The	learner	generates	the	probability	of	a	given	container	node	trigram	based	on	the	
observed	data.	Then,	to	gauge	the	grammaticality	of	any	given	container	node	chain	(such	
as	an	island),	the	learner	calculates	the	probability	of	observing	that	sequence	of	container	
node	trigrams,	which	is	simply	the	product	of	the	trigram	probabilities.5	For	example,	in	
(3),	the	sequence	IP-VP	would	have	a	probability	equal	to	the	product	of	the	trigram	start-
IP-VP	and	the	trigram	IP-VP-end.			

																																																								
4	Note	that	this	means	a	learner	is	learning	from	data	containing	dependencies	besides	the	one	of	interest.		

For	example,	a	learner	deciding	about	the	sequence	IP-VP-CPthat-IP-VP	would	learn	from	IP-VP	dependencies	

that	the	trigram	start-IP-VP	appears.		This	is	an	implicit	learning	bias	that	expands	the	relevant	intake	set	of	

the	learner	–	all	dependencies	are	informative,	not	just	the	ones	being	judged	as	grammatical	or	

ungrammatical.	

5	We	note	that	the	learner	uses	smoothed	trigram	probabilities	(using	Lidstone’s	Law	(Manning	&	Schütze	

1999)	with	smoothing	constant	a	=	0.5),	so	unobserved	trigrams	have	a	frequency	slightly	above	0.		

Specifically,	the	learner	imagines	that	unobserved	trigrams	have	been	observed	a	times,	rather	than	0	times,	

and	all	other	trigrams	have	been	observed	a	+	their	actual	observed	occurrences.	



	 All	other	things	being	equal,	this	automatically	makes	longer	dependencies	less	
probable	than	shorter	dependencies	since	more	probabilities	are	multiplied	together	for	
longer	dependencies,	and	those	probabilities	are	always	less	than	1.	Note,	however,	that	
the	frequency	of	the	individual	trigrams	comprising	those	dependencies	still	has	a	large	
effect.	In	particular,	a	shorter	dependency	that	includes	a	sequence	of	very	infrequent	
trigrams	will	still	be	less	probable	than	a	longer	dependency	that	contains	very	frequent	
trigrams.	Thus,	the	frequencies	observed	in	the	input	temper	the	detrimental	effect	of	
dependency	length.	The	learning	algorithm	and	calculation	of	grammaticality	preferences	
are	schematized	in	figure	2,	and	two	examples	of	grammaticality	preferences	are	shown	in	
(9)	and	(10).	
	
Figure	2.	Steps	in	the	acquisition	process	and	calculation	of	grammaticality	preferences.	
	

	
	
	
(9)	 “Where	does	he	think	Jack	stole	from?”	

[CP	Where	does	[IP	[NP		he]	[VP	think	[CP					[IP	[NP	Jack]	[VP	stole	[PP	from	__]]]]]]]?”	 	
		 	 					 			IP	 										VP											CPnull	IP	 			VP	 							PP	
	 Sequence:	 start-IP-VP-CPnull-IP-VP-PP-end	 	

										 	 start-IP-VP-CP-IP-VP-PP-end		
start-IP-VP-CPnull-IP-VP-PP-end	 	 						
start-IP-VP-CPnull-IP-VP-PP-end		 												
start-IP-VP-CPnull-IP-VP-PP-end	 	 	 	
start-IP-VP-CPnull-IP-VP-PP-end	 	 	
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start-IP-VP-CPnull-IP-VP-PP-end	 	 	 	
	 Probability(IP-VP-CPnull-IP-VP-PP)	=		
	 			p(start-IP-VP)*p(IP-VP-CPnull)*p(VP-CPnull-IP)*p(CPnull-IP-VP)*p(IP-VP-PP)*p(VP-
PP-end)	
	
(10)	 *“Who	does	Jack	think	the	necklace	for	is	expensive?”	

[CP	Who	does	[IP	[NP	Jack]	[VP	think	[CP								[IP	[NP	the	necklace	[PP	for	__]]	[VP	is	
expensive]]]]]]?	

	 	 													IP	 							VP												CPnull	IP	NP	 																	PP	
	 Sequence:		 start-IP-VP-CPnull-IP-NP-PP-end	
	 											 	 start-IP-VP-CP-IP-NP-PP-end	
	 	 	 start-IP-VP-CPnull-IP-NP-PP-end	
	 	 	 start-IP-VP-CPnull-IP-NP-PP-end	
	 	 	 start-IP-VP-CPnull-IP-NP-PP-end	
	 	 	 start-IP-VP-nullCP-IP-NP-PP-end	
	 	 	 start-IP-VP-nullCP-IP-NP-PP-end	
	 Probability(IP-VP-CPnull-IP-NP-PP)	=		
	 			p(start-IP-VP)*p(IP-VP-CPnull)*p(VP-CPnull-IP)*p(CPnull-IP-NP)*p(IP-NP-PP)*p(NP-
PP-end)	
	
	 Given	this	learning	algorithm,	a	child	can	generate	a	grammaticality	preference	for	a	
given	dependency	at	any	point	during	learning,	based	on	the	input	previously	observed,	by	
calculating	its	probability	from	the	frequency	of	the	trigrams	that	comprise	it	(see	Figure	
2).	Similarly,	a	relative	grammaticality	preference	can	be	calculated	by	comparing	the	
probabilities	of	two	dependencies’	container	node	sequences.	This	will	allow	us,	for	
example,	to	compare	the	inferred	grammaticality	of	dependencies	spanning	island	
structures	versus	dependencies	spanning	non-island	structures.	
	
4.	Learning	about	islands	from	realistic	input	
	
We	turn	now	to	specific	case	studies	of	learning	preferences	about	structural	
dependencies.	First,	we	consider	the	input	to	our	modeled	learners.	If	we	are	modeling	how	
children	acquire	their	grammaticality	preferences,	we	should	look	at	child-directed	speech.	
If	we	are	instead	interested	in	how	adults	acquire	their	preferences	(perhaps	because	we	
have	empirical	data	from	adults),	then	we	may	be	interested	in	a	mix	of	adult-directed	
speech	and	adult-directed	text.	Table	2	describes	the	basic	composition	of	three	corpora	
types:	child-directed	speech	from	the	Adam	and	Eve	corpora	from	Brown	(Brown	1973),	
the	Valian	corpus	(Valian	1991),	and	the	Suppes	corpus	(Suppes	1974),		adult-directed	
speech	from	the	Switchboard	section	of	the	Treebank-3	corpus	(Marcus	et	al.	1999)	and	
adult-directed	text	from	the	Brown	section	of	the	Treebank-3	corpus	(Marcus	et	al.	1999).	
Figure	3	provides	a	compact	representation	of	the	distribution	of	the	types	of	wh-
dependencies	in	each	corpus.	
	
Table	2:	Basic	composition	of	the	child-directed	and	adult-directed	input	corpora.	
	 	 	 	

	 Child-directed:	 Adult-directed:	 Adult-directed:	



speech	 speech	 text	
	 	 	 	
	 	 	 	

total	#	utterances	 101838	 74576	 24243	
total	wh-dependencies	 20923	 8508	 4230	
	 	 	 	

	
Figure	3.	The	15	most	frequent	wh-dependency	types	in	the	three	corpora	types.	The	left	
panel	displays	the	10	most	frequent	wh-dependency	types	for	each	of	the	three	corpora	
types,	with	IP-VP	and	IP	dominating	all	three	corpora	types	(IP-VP:	rank	1,	IP:	rank	2).	The	
right	panel	displays	the	6th-15th	most	frequent	wh-dependency	types	on	a	smaller	y-axis	
scale	(0-.01)	in	order	to	highlight	the	small	amount	of	variation	between	corpora	types	for	
these	dependency	types.	

	
	
	 Notably,	two	sequences	dominate	the	input,	no	matter	what	the	corpus:	IP-VP	and	
IP,	corresponding	to	main	clause	object	and	main	clause	subject	dependencies,	
respectively.	Interestingly,	child-directed	speech	doesn’t	seem	to	differ	much	from	adult-
directed	speech	with	respect	to	the	proportional	frequency	of	these	two	sequences	(child-
directed:	78.3%/11.7%,	adult-directed	(Switchboard):	73.0%/17.2%).	Adult-directed	
written	text	tends	to	be	biased	slightly	more	towards	main	clause	subject	dependencies,	
though	main	clause	object	dependencies	are	still	far	more	prevalent	(IP-VP:	63.3%	to	IP:	
33.0%).	Also,	we	note	that	overt	complementizers	are	rare	in	general.	This	will	become	
relevant	when	we	examine	the	learned	grammaticality	preferences	for	dependencies	
involving	the	complemetizer	that.	
	 We	can	test	our	modeled	learners	by	comparing	their	learned	grammaticality	
preferences	to	empirical	data	on	adult	grammaticality	judgments	available	in	Sprouse	et	al.	
(2012)	(see	also	Sprouse	(this	volume)).	Recall	that	Sprouse	et	al.	(2012)	examined	four	
island	types,	using	a	factorial	definition	of	island	effects	for	each	island	type.		The	resulting	
container	node	sequence	for	each	type	is	given	in	(11)–(14):	(a)	matrix	gap,	non-island	
structure,	(b)	embedded	gap,	non-island	structure,	(c)	matrix	gap,	island	structure,	(d)	
embedded	gap,	island	structure.	
	
(11)	 Complex	NP	islands	
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	 a.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	NON-ISLAND	
	 b.	 *IP-VP-CPthat-IP-VP	 	 	 	 	 	 EMBEDDED	|	NON-ISLAND	

c.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	ISLAND		
	 d.	 *IP-VP-NP-CPthat-IP-VP	 	 	 	 	 EMBEDDED	|	ISLAND	
	
(12)	 Subject	islands	
	 	
	 a.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	NON-ISLAND	
	 b.	 *IP-VP-CPnull-IP	 	 	 	 	 	 EMBEDDED	|	NON-ISLAND	
	 c.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	ISLAND	
	 d.	 *IP-VP-CPnull-IP-NP-PP	 	 	 	 	 EMBEDDED	|	ISLAND	
	
(13)	 Whether	islands	
	 	
	 a.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	NON-ISLAND	
	 b.	 *IP-VP-CPthat-IP-VP	 	 	 	 	 	 EMBEDDED	|	NON-ISLAND	
	 c.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	ISLAND	
	 d.	 *IP-VP-CPwhether-IP-VP	 	 	 	 	 EMBEDDED	|	ISLAND	
	
(14)	 Adjunct	islands	
	 	
	 a.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	NON-ISLAND	
	 b.	 *IP-VP-CPthat-IP-VP	 	 	 	 	 	 EMBEDDED	|	NON-ISLAND	
	 c.	 *IP	 	 	 	 	 	 	 	 MATRIX	|	ISLAND	
	 d.	 *IP-VP-CPif-IP-VP	 	 	 	 	 	 EMBEDDED	|	ISLAND	
	

Recall	also	that	the	factorial	definition	of	island	effects	makes	the	presence	of	an	
island	effect	visually	salient:	If	we	plot	the	acceptability	of	the	four	sentence	types	in	a	
configuration	known	as	an	interaction	plot,	the	presence	of	an	island	effect	shows	up	as	
two	non-parallel	lines,	which	indicates	a	statistical	interaction	of	the	two	factors	in	the	
definition	(the	left	panel	of	Figure	1);	the	absence	of	an	island	effect	shows	up	as	two	
parallel	lines,	which	indicates	no	interaction	of	the	two	factors	in	the	definition	(the	right	
panel	of	Figure	1).	

To	evaluate	the	success	of	our	learners,	we	can	plot	the	predicted	grammaticality	
preferences	in	a	similar	interaction	plot:	If	the	lines	are	non-parallel,	indicating	an	
interaction,	similar	to	the	graph	in	the	left	panel	of	Figure	1,	then	the	learner	has	acquired	
island	constraints;	if	the	lines	are	parallel,	indicating	no	interaction,	similar	to	the	graph	in	
the	right	of	Figure	1,	then	the	learner	did	not	acquire	island	constraints.	
	 To	ground	the	learning	period	for	our	modeled	learners,	we	can	draw	on	empirical	
data	from	Hart	&	Risley	(1995)	and	assume	children	hear	approximately	1	million	
utterances	between	birth	and	3	years	of	age.	If	we	assume	our	learners’	learning	period	is	
approximately	3	years	(perhaps	between	the	ages	of	2	and	5	years	old,	if	we’re	modeling	
children’s	acquisition),	we	can	estimate	the	number	of	wh-dependencies	they	hear	out	of	
those	one	million	utterances.	Given	child-directed	speech	samples	from	Adam	and	Eve	
(Brown	1973),	Valian	(Valian	1991),	and	Suppes	(Suppes	1974),	and	estimating	the	



proportion	of	wh-dependencies	given	the	total	number	of	utterances	(20%),	we	set	the	
learning	period	to	200,000	data	points.	So,	our	learners	will	encounter	200,000	data	points	
containing	dependencies,	drawn	randomly	from	a	distribution	characterized	by	the	
corpora	in	Table	2	and	Figure	3.	 	
	 All	our	modeled	learners	will	follow	the	learning	algorithm	and	grammaticality	
preference	calculation	outlined	in	Figure	2.	In	particular,	they	will	receive	data	
incrementally,	identify	the	container	node	sequence	and	trigrams	contained	in	that	
sequence,	and	update	their	corresponding	trigram	frequencies.	They	will	then	use	these	
trigram	frequencies	to	infer	a	probability	for	a	given	wh-dependency,	which	can	be	equated	
to	its	judged	grammaticality	–	more	probable	dependencies	are	more	grammatical,	while	
less	probable	dependencies	are	less	grammatical.	Though	the	inferred	grammaticality	can	
be	generated	at	any	point	during	learning	(based	on	the	trigram	frequencies	at	that	point),	
we	will	show	results	only	from	the	end	of	the	learning	period.	
	 Because	the	result	of	a	grammaticality	preference	calculation	is	often	a	very	small	
number	(due	to	multiplying	many	probabilities	together),	we	will	calculate	the	log	
probability.	This	allows	for	easier	comparison	of	grammaticality	judgments.	All	of	the	log	
probabilities	are	negative.	The	more	positive	numbers	(i.e.	closer	to	zero)	represent	“more	
grammatical”	structures	while	more	negative	numbers	(i.e.,	farther	from	zero)	represent	
“less	grammatical”	structures.6	To	make	a	direct	comparison	of	these	log	probabilities	with	
acceptability	judgments,	Figure	4	plots	the	experimentally	obtained	judgments	for	the	
dependencies	from	Sprouse	et	al.	(2012),	while	Figure	5	shows	the	model-derived	log	
probabilities	of	the	dependencies,	based	on	child-directed	input	and	Figure	6	shows	the	
model-derived	log	probabilities	of	the	dependencies,	based	on	adult-directed	input.		
	
Figure	4:	Experimentally	derived	acceptability	judgments	for	all	four	island	types	from	
Sprouse	et	al.	(2012)	(N=173).		 	 	 	 	

																																																								
6	This	measurement	is	similar	to	surprisal,	which	is	traditionally	defined	as	the	negative	log	probability	of	

occurrence	(Tribus	1961)	and	has	been	used	recently	within	the	sentence	processing	literature	(Hale	2001,	

Jaeger	&	Snider	2008,	Levy	2008,	Levy	2011a).		Under	this	view,	less	grammatical	dependencies	are	more	

surprising.	



	

	
	
Figure	5:	Log	probabilities	derived	from	child-directed	speech.	
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Figure	6:	Log	probabilities	derived	from	adult-directed	speech	and	text.	
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We	see	in	Figures	5	and	6	that	a	learner	using	either	child-directed	data	or	adult-
directed	data	would	end	up	with	the	correct	grammaticality	preferences	for	all	four	islands	
(compare	these	figures	to	Figure	4).	
	 To	sum	up,	we	find	that	a	learner	that	tracks	the	probabilities	of	certain	abstract	
representations	of	wh-dependencies	in	the	input	is	able	to	reproduce	adult	judgments	
about	the	(un)grammaticality	of	islands.	In	order	to	capture	adult	judgments	about	all	four	
islands	investigated,	the	learning	model	requires	adult-directed	input	and	a	certain	level	of	
specification	in	the	representation.	The	proposed	algorithm	does	require	relatively	
sophisticated	biases,	such	as	(i)	the	parsing	of	sentences	into	phrase	structure	trees,	(ii)	the	
extraction	of	sequences	of	container	nodes	for	the	dependencies,	(iii)	the	tracking	of	the	
frequency	of	trigrams	of	container	nodes,	and	(iv)	the	calculation	of	the	probability	of	the	
complete	container	node	sequence	for	the	dependency,	based	on	its	trigrams.	In	the	next	
section,	we	discuss	the	nature	of	these	component	biases,	and	how	they	might	actually	
arise	in	the	learner.	
	
5.	The	nature	of	the	necessary	learning	biases		
The	question	of	whether	a	given	learning	bias	is	nativist	or	non-nativist	in	nature	is	actually	
quite	a	bit	more	complex	than	is	often	assumed	in	the	syntactic	literature.	For	example,	
there	at	least	three	dimensions	to	learning	biases	that	may	be	relevant	(Pearl	&	Mis	2011,	
submitted):	
	
(i) Are	they	innate	(and	so	part	of	the	human	biological	endowment)	or	derived	from	

prior	experience	(probably	prior	experience	with	language	data)?	
(ii) Are	they	domain-specific	(and	are	only	used	for	learning	language)	or	domain-general	

(and	are	used	when	learning	anything)?	
(iii) Are	they	about	the	hypothesis	space	(and	so	may	restrict	the	learner’s	hypotheses	

explicitly)	or	about	the	learning	mechanism	(and	so	may	restrict	the	learner’s	
hypotheses	implicitly)?	

	
	 Clearly,	learning	biases	could	involve	any	logically	possible	combination	of	these	
dimensions.		For	example,	a	more	abstract	representation	of	linguistic	structure	could	be	
derived	from	phrase	structure	trees,	which	themselves	may	be	derived	from	distributional	
properties	of	the	linguistic	input	by	using	probabilistic	learning.	This	might	then	be	
classified	as	a	derived,	domain-specific	bias	about	the	representation	of	the	hypothesis	space.	
Probabilistic	learning,	in	contrast,	might	be	classified	as	an	innate,	domain-general	bias	
about	the	learning	mechanism.	Note	that	only	learning	biases	that	are	both	innate	and	
domain-specific	are	candidates	for	UG.	For	example,	an	explicit	constraint	against	syntactic	
islands	would	be	just	this	kind	of	bias,	since	it	would	be	innate	(it’s	explicitly	built	in)	and	
domain-specific	(it	applies	only	to	language).	In	addition,	we	could	likely	classify	it	as	a	bias	
about	the	hypothesis	space,	since	it	explicitly	constrains	the	hypothesis	space	of	the	learner	
to	exclude	islands.	Our	learning	strategy	does	not	use	this	bias,	but,	as	mentioned	above,	it	
does	use	a	number	of	fairly	sophisticated	learning	biases.	We	discuss	each	in	turn	with	a	
particular	focus	on	(i)	the	empirical	motivation	for	each	bias	and	(ii)	the	potential	
classification	of	each	bias	according	to	the	framework	above.	
	
5.1	Parsing	sentences	into	phrase	structure	trees	



One	of	the	most	basic	components	of	the	proposed	learning	algorithm	is	that	it	operates	
over	input	that	has	been	parsed	into	phrase	structure	trees.	In	order	to	represent	the	input	
this	way,	children	need	the	ability	to	parse	and	track	dependencies	in	a	given	utterance.	
Work	by	Fodor	(Fodor	1998a,	Fodor	1998b,	Sakas	&	Fodor	2001,	Fodor	2009)	suggests	
that	this	ability	may	be	useful	for	learning	many	different	kinds	of	syntactic	structures.	This	
component	assumes	that	both	syntactic	category	information	and	phrase	structure	
information	have	already	been	acquired	by	the	learner	(or	are	in	the	process	of	being	
acquired).	We	do	not	have	too	much	to	say	about	this	assumption	because	basic	syntactic	
phenomena	like	syntactic	categories	and	phrase	structure	parsing	are	required	by	nearly	
every	syntactic	phenomenon.	We	would	likely	consider	this	ability	to	be	a	learning	bias	that	
is	domain-specific	since	it	applies	to	language	data,	and	a	bias	about	the	hypothesis	space	
since	it	involves	representing	the	input	in	a	particular	way.	It	is	possible	that	the	process	of	
chunking	data	into	cohesive	units	is	domain-general	and	innate	(e.g.,	parsing	visual	scenes	
into	cohesive	units),	though	it	is	possible	that	the	particular	units	that	are	being	chunked	
(i.e.,	phrasal	constituents)	can	be	derived	from	distributional	properties	of	the	input	(for	
recent	work	investigating	the	acquisition	of	syntactic	categories	from	child-directed	input,	
see	Mintz	(2003)	and	(2006),	and	for	recent	work	investigating	the	acquisition	of	
hierarchical	structure	given	syntactic	categories	as	input,	see	Klein	&	Manning	(2002)).	
Nonetheless,	it	may	be	the	case	that	the	acquisition	of	syntactic	categories	or	phrase	
structure	requires	at	least	one	innate,	domain-specific	bias,	in	which	case	every	syntactic	
phenomenon,	including	syntactic	islands,	would	(strictly	speaking)	require	such	a	bias.	
Nonetheless,	this	would	not	be	a	fact	that	is	specific	to	syntactic	islands,	but	rather	a	
general	fact	of	every	syntactic	phenomenon.	We	are	specifically	interested	in	the	
consequences	of	syntactic	islands	for	learning	theories,	rather	than	the	consequences	of	
every	syntactic	phenomenon.		
	
5.2	Characterizing	dependencies	as	sequences	of	container	nodes	
Identifying	which	units	are	potential	container	nodes	is	very	important	for	this	learning	
algorithm	to	be	psychologically	plausible.	The	bias	to	track	sequences	of	container	nodes	
appears	relatively	neutral	at	first	glance;	after	all,	syntactic	island	effects	are	constraints	on	
dependencies,	and	therefore	the	algorithm	should	track	information	about	the	
dependencies.	However,	this	raises	the	question	of	how	it	is	that	the	algorithm	knows	to	
track	container	nodes	rather	than	some	other	piece	of	information	about	a	dependency	
(e.g.,	number	of	nouns,	number	of	verbs,	etc.).	It	is	true,	as	mentioned	in	section	3,	that	the	
fact	that	the	parsing	of	long-distance	dependencies	is	an	active	process	means	that	the	
sequence	of	container	nodes	is	information	that	is	likely	available	to	(and	salient	for)	the	
language	system,	but	availability	is	distinct	from	attention.	The	current	algorithm	is	biased	
to	attend	to	container	nodes	instead	of	all	of	the	other	logically	possible	types	of	
information	about	dependencies	that	are	potentially	available.	This	bias	is	likely	domain-
specific,	as	long-distance	dependencies	(and	their	constraints)	have	not	been	clearly	
demonstrated	in	any	other	domain	of	cognition.	It	is	also	likely	a	bias	about	the	hypothesis	
space,	since	it	involves	the	learner	characterizing	the	dependencies	in	the	hypothesis	space	
a	particular	way.	However,	it	is	an	open	question	whether	this	bias	is	also	innate,	or	
whether	it	can	be	derived	from	other	biases.	Nonetheless,	it	seems	to	be	the	case	that	any	
theory	of	syntactic	islands	that	postulates	a	structurally-defined	constraint	will	likely	track	
container	nodes,	and	therefore	will	be	confronted	with	this	difficult	question.	



	 In	addition	to	a	bias	to	heed	container	nodes,	the	proposed	algorithm	has	a	bias	to	
track	subcategories	of	CP	based	on	the	lexical	item	that	introduces	the	CP	(e.g.,	that,	
whether,	if,	and	the	null	complementizer).		Similar	to	the	container	node	bias,	this	is	
empirically	necessary:	An	algorithm	that	treats	all	CPs	identically	will	fail	to	learn	Whether	
islands	and	Adjunct	islands,	because	the	only	difference	between	Whether	and	Adjunct	
violations	and	their	non-island	control	conditions	is	in	the	type	of	CP	(that	versus	whether,	
and	that	versus	if).	Again	similar	to	the	container	node	bias,	this	raises	the	question	of	how	
the	algorithm	knows	what	the	proper	set	of	container	nodes	to	track	is.	It	is	logically	
possible	to	subcategorize	any	number	of	maximal	projections,	or	none	at	all,	or	even	to	
count	intermediate	projections	(e.g.,	N’)	as	a	container	node.	The	fact	that	CPs	can	be	
subcategorized	is	relatively	straightforward.	Different	CPs	introduce	different	types	of	
clauses,	with	substantial	semantic	differences:	that	introduces	declarative	clauses	(which	
are	semantically	propositions),	whether	introduces	questions	(which	are	semantically	sets	
of	propositions),	and	if	introduces	condition	clauses.	However,	the	fact	that	this	type	of	
information	is	available	to	the	language	system	does	not	explain	how	it	is	that	the	learner	
knows	to	pursue	this	particular	strategy	(or	knows	where	to	draw	the	line	between	types	
of	container	nodes).	It	may	be	possible	to	capture	part	of	this	behavior	with	innate,	domain-
general	preferences	for	certain	types	of	hypotheses	(either	more	specific	hypotheses,	such	
as	subcategorize	all	container	nodes,	or	more	general	hypotheses,	such	as	subcategorize	no	
container	nodes)	coupled	with	a	domain-specific	proposal	about	the	types	of	information	in	
the	learning	mechanism	that	could	be	used	to	correct	mistaken	hypotheses.	But	this	simply	
pushes	back	the	question	to	one	about	how	the	system	knows	which	evidence	to	look	for	to	
correct	mistaken	hypotheses	(i.e.,	is	it	innate	or	derived?).	In	short,	much	like	the	container	
node	bias,	the	empirical	necessity	of	subcategorizing	CPs	raises	difficult	questions	for	any	
theory	of	the	acquisition	of	syntactic	islands.	
	
5.3	Tracking	the	frequency	of	container	node	trigrams	
The	proposed	algorithm	decomposes	the	container	node	sequence	into	trigrams	(a	moving	
window	of	three	container	nodes).	Once	again,	this	is	an	empirical	necessity:	The	corpus	
analysis	in	section	2	suggests	that	the	learning	algorithm	must	decompose	the	container	
node	sequences	into	smaller	units,	otherwise	three	of	the	(grammatical)	MATRIX	|	ISLAND	
conditions	would	be	erroneously	characterized	as	ungrammatical.		Similar	to	the	previous	
biases,	it	is	an	open	question	how	this	bias	arises.	Learning	models	based	on	sequences	of	
three	units	have	been	proposed	and	are	consistent	with	children’s	observable	behavior	for	
other	linguistic	knowledge	(e.g.,	the	comparison	of	three	sequential	transitional	
probabilities	for	word	segmentation:	Saffran	et	al.	1996,	Aslin	et	al.	1998,	Graf	Estes	et	al.	
2007,	Pelucchi	et	al.	2009a,	Pelucchi	et	al.	2009b;	frequent	frames	consisting	of	three	
sequential	units	for	grammatical	categorization:	Mintz	2006,	Wang	&	Mintz	2008);	
additionally,	these	learning	models	are	consistent	with	human	behavior	for	non-linguistic	
phenomena	(Saffran	et	al.	1996)	and	also	with	learning	behavior	in	non-human	primates	
(Saffran	et	al.	2008).	Given	this,	such	a	bias	is	likely	domain-general	(and	clearly	about	the	
learning	mechanism);	however,	the	fact	that	trigrams	are	an	available	option	does	not	
explain	how	it	is	that	the	learning	algorithm	knows	to	leverage	trigrams	(as	opposed	to	
other	n-grams)	for	syntactic	islands.		
	 A	more	easily	solved	issue	concerns	the	potential	issue	of	data	sparseness	that	could	
occur	with	a	trigram	model,	such	that	the	learner	could	not	possibly	hope	to	have	enough	



input	to	observe	examples	of	all	legal	trigrams.7	However,	that	is	not	likely	to	be	a	problem	
for	the	learner	we	propose,	since	we	are	constructing	trigrams	over	units	much	more	
abstract	than	individual	vocabulary	items.	If	we	have	fewer	than	15	(as	we	might	if	we	only	
use	IP,	VP,	NP,	PP,	AdjP,	and	CP	subtypes	as	the	relevant	phrasal	constituents),	then	the	
number	of	trigrams	children	must	track	is	less	than	153	(3375).	This	is	likely	less	than	the	
number	of	vocabulary	items	children	know	by	the	time	they	would	be	learning	
grammaticality	preferences	about	dependency	structures,	and	so	doesn’t	seem	particularly	
taxing	for	children	to	track.		
	
5.4	Calculating	the	probability	of	a	container	node	sequence	based	on	trigrams	
Another	basic	component	of	the	proposed	algorithm	is	that	the	learner	has	the	ability	to	
track	the	frequency	of	units	in	the	input,	and	then	calculate	the	probabilities	of	those	units.	
This	is	a	relatively	uncontroversial	assumption,	as	many	learning	theories,	both	in	language	
and	other	cognitive	domains,	assume	that	the	learner	can	track	frequencies	and	calculate	
probabilities.	The	bias	to	track	frequencies	and	calculate	probabilities	is	likely	an	innate,	
domain-general	bias	about	the	learning	mechanism.	Still,	the	interesting	question	about	the	
ability	to	track	frequencies	and	calculate	probabilities	is	not	so	much	the	existence	of	the	
ability	itself,	but	rather	the	units	that	are	tracked,	which	we	discussed	above.	
	
5.5	Learning	bias	summary	
	 Table	3	summarizes	the	learning	biases	required	for	the	proposed	acquisition	
process	along	the	relevant	dimensions	for	the	UG	debate:	domain-specific	vs.	domain-
general,	and	innate	vs.	derived.	Note	that	none	of	the	learning	biases	(or	their	components)	
are	definitively	both	innate	and	domain-specific	simultaneously	(though	some	very	well	
could	be).	If	these	biases	(and	their	components)	turn	out	not	to	be	both	innate	and	
domain-specific,	they	would	then	not	be	part	of	a	nativist/UG-based	approach	to	the	
acquisition	of	island	constraints.	In	other	words,	the	learning	model	that	we	have	
constructed	here	would	not	be	based	on	any	Universal	Grammar	assumptions.	
	
Table	3.	Classification	of	the	learning	biases	required	by	the	proposed	acquisition	process.	
The	critical	bias	types	(domain-specific	and	innate)	are	shaded	to	help	illustrate	the	fact	
that	no	process	in	this	learning	model	requires	a	bias	that	is	clearly	both	domain-specific	
and	innate	simultaneously,	though	questions	still	remain	about	how	some	of	these	biases	
arise	in	the	learner.	
	
	

Description	of	process	 Domain-	
specific	

Domain-	
general	 Innate	 Derived	

	 	 	 	 	

Parse	utterance	into	a	phrase	structure	tree	 *	 	 ?	 ?	
	 	 	 	 	

Characterize	dependency	as	container	node	
sequence	

*	 	 ?	 ?	

	 	 	 	 	

Identify	trigrams	&	update	probability	 	 *	 *	 	
	 	 	 	 	

																																																								
7	Additionally,	tracking	a	huge	number	of	trigrams	may	strain	a	learner’s	memory.	



Calculate	probability	of	utterance’s	dependency	 	 *	 *	 	
	 	 	 	 	

	
	
6.	Discussion	&	conclusion	
	
In	this	chapter,	we	have	proposed	a	statistical	model	for	the	acquisition	of	syntactic	
constraints	on	wh-dependencies	that	does	not	rely	on	innate,	domain-specific	knowledge	of	
island	constraints.	Instead,	our	psychologically	plausible	learning	model	is	able	to	implicitly	
derive	knowledge	of	islands	from	the	input	using	a	series	of	relatively	uncontroversial	
assumptions,	such	as	the	ability	to	parse	sentences	into	phrase	structure	trees,	the	ability	
to	track	the	nodes	that	contain	the	gap	location	of	a	wh-dependency,	the	ability	to	track	the	
frequency	of	trigrams	of	container	nodes,	and	the	ability	to	construct	a	grammaticality	
preference	for	a	dependency	based	on	its	trigrams.	This	suggests	that	children	(and	adults)	
do	not	need	innate,	domain-specific	knowledge	about	islands,	which	in	turn	suggests	that	
explicit	constraints	against	island	structures	do	not	have	to	be	part	of	Universal	Grammar.	
In	addition,	we	find	that	the	learning	strategy	capable	of	doing	this	doesn’t	even	need	to	
involve	sophisticated	probabilistic	inference	abilities,	such	as	Bayesian	updating	(e.g.,	
Feldman	et	al.	2009,	Foraker	et	al.	2009,	Frank	et	al.	2009,	Goldwater	et	al.	2009,	Pearl	et	al.	
2011,	Perfors	et	al.	2011).	Instead,	the	probabilistic	learning	component	is	fairly	simple	and	
involves	tracking	frequencies	of	particular	linguistic	representations	that	are	small	in	size	
(trigrams	of	container	nodes).	
	 However,	these	results	do	raise	interesting	questions	about	how	feasible	this	
learner	would	be	for	the	full	range	of	constraints	on	wh-dependencies.	Though	this	
statistical	model	demonstrates	that	syntactic	islands	can	in	principle	be	learned	from	child-
directed	input,	this	particular	model	cannot	capture	certain	exceptions	to	syntactic	island	
constraints,	such	as	parasitic	gap	constructions	(Engdahl,	1983).	Parasitic	gap	
constructions	are	wh-questions	in	which	the	wh-word	is	associated	with	two	gap	positions:	
one	gap	position	occurs	in	a	licit	gap	location	(i.e.,	not	inside	a	syntactic	island)	while	the	
other	gap	position	occurs	inside	a	syntactic	island.	Whereas	a	single	gap	within	an	island	
structure	results	in	unacceptability	(15a	and	16a),	the	addition	of	another	gap	outside	of	
the	island	seems	to	eliminate	the	unacceptability	(15b	and	16b)	(see	Phillips	2006	for	
experimentally	collected	acceptability	judgments):	
	
(15)	 a.	 *Which	book	did	you	laugh	[before	reading	__]?	 	

b.	 *Which	book	did	you	judge	__true	[before	reading	__parasitic]?	
	
(16)	 a.	 *What	did	[the	attempt	to	repair	__]	ultimately	damage	the	car?	
	 b.	 *What	did	[the	attempt	to	repair	__parasitic]	ultimately	damage	__	true?	
	
The	two	gaps	in	a	parasitic	gap	construction	are	often	described	as	the	true	gap,	which	
occurs	outside	of	the	island,	and	the	parasitic	gap,	which	occurs	inside	of	the	island.	The	
name	is	a	metaphorical	reference	to	the	fact	that	the	parasitic	gap	could	not	exist	without	
the	true	gap,	much	like	a	parasite	cannot	exist	without	a	host.	Though	there	are	several	
structural	restrictions	on	parasitic	gap	constructions	(e.g.,	the	true	gap	cannot	c-command	



the	parasitic	gap),	there	is	no	constraint	on	the	linear	order	of	the	two	gaps,	as	illustrated	
by	(15-16).		
	 We	believe	the	grammaticality	of	parasitic	gap	constructions	pose	a	problem	for	our	
statistical	learner.	This	is	because	the	probability	of	the	trigram	sequence	for	the	
dependency	between	the	wh-word	and	the	parasitic	gap	will	be	the	same	as	the	probability	
of	the	trigram	sequence	for	the	relevant	syntactic	island	violation.	In	other	words,	our	
learner	would	infer	that	parasitic	gap	constructions	are	ungrammatical.	For	example,	the	
container	node	sequences	for	(15)	would	be	as	in	(17).	The	sequence	for	both	the	
ungrammatical	gap	in	(15a)	and	the	grammatical	(parasitic)	gap	in	(15b)	are	identical,	and	
in	fact	would	be	as	(un)acceptable	as	other		adjunct	islands,	such	as	those	using	the	
complementizer	if.	
	
(17)	
	 a.	 *Which	book	did	[IP	you	[VP	laugh		 			[CP	without	[IP	[VP	reading	__]]]]]?	 	
	 	 *Ungrammatical	gap	sequence:		 IP-VP-CPwithout-IP-VP	

	
b.	 *Which	book	did	[IP	you	[VP	judge	__true	[CP	without	[IP	[VP	reading	__parasitic]]]]]]?	

	 	 *Parasitic	gap	sequence:		 	 IP-VP-CPwithout-IP-VP	
	
Given	that	this	is	not	the	desired	target	state,	the	learning	algorithm	proposed	here	is	
unlikely	to	be	the	one	children	use	in	practice.	However,	it	may	be	possible	to	modify	the	
learning	model	to	account	for	these	constructions.	For	example,	recent	studies	
demonstrate	that	the	human	parser	continues	to	actively	search	for	a	second	gap	even	after	
encountering	a	licit	first	gap	(Wagers	&	Phillips,	2009).	It	could	be	that	the	learning	
algorithm	assembles	a	grammaticality	preference	based	on	some	kind	of	aggregation	of	all	
container	node	sequences	for	gaps	in	a	given	utterance.	However,	unless	there	is	an	innate,	
domain-specific	bias	to	aggregate	gap	information	(which	would	then	make	this	a	UG	bias),	
this	would	need	to	be	derived	from	linguistic	experience	somehow.	One	way	is	for	children	
to	have	experience	with	multiple	gaps	associated	with	the	same	wh-element.	In	order	for	
this	to	be	true,	child-directed	input	(or	adult-directed,	if	acquisition	is	relatively	late)	must	
contain	examples	of	wh-elements	associated	with	multiple	gaps,	such	as	examples	of	
parasitic	gaps.	We	are	currently	examining	additional	syntactically-annotated	child-
directed	corpora	to	answer	this	(and	other)	questions.	
	 The	implications	of	these	findings	for	the	grammar	versus	reductionism	debate	are	
substantial.	Many	of	the	reductionist	proposals	for	capturing	island	effects	without	
grammatical	constraints	have	at	their	heart	the	notion	that	fewer	grammatical	constraints	
will	lead	to	“simpler”	grammars,	and	thus	less	motivation	for	innate,	domain-specific	
learning	biases	(i.e.,	Universal	Grammar).	However,	as	we	have	just	seen,	syntactic	
constraints	on	wh-dependencies	can	be	learned	in	principle	from	input	available	to	
children	without	the	need	for	innate,	domain-specific	biases	((i.e.,	Universal	Grammar).	
Therefore	there	appears	to	be	little	psychological	motivation	to	“simplify”	grammatical	
theories	above	and	beyond	the	quest	for	truth	in	science,	which	in	this	case	would	be	the	
desire	to	accurately	characterizing	the	grammatical	system	itself.	We	believe	that	this	
changes	the	nature	of	this	debate	significantly,	as	the	question	about	the	right	
characterization	of	island	effects	is	no	longer	tied	to	assumptions	about	the	nature	of	



language	acquisition,	but	is	instead	simply	one	question	among	many	that	must	be	
answered	to	arrive	at	a	complete	understanding	of	the	human	language	faculty.		
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